If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2*63=16
We move all terms to the left:
x^2*63-(16)=0
Wy multiply elements
63x^2-16=0
a = 63; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·63·(-16)
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{7}}{2*63}=\frac{0-24\sqrt{7}}{126} =-\frac{24\sqrt{7}}{126} =-\frac{4\sqrt{7}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{7}}{2*63}=\frac{0+24\sqrt{7}}{126} =\frac{24\sqrt{7}}{126} =\frac{4\sqrt{7}}{21} $
| 4x-9^2=0 | | 5x+12=-55-8x | | -12g+18=10g-26 | | 2x+x+5=37 | | 2.6x=-52 | | (190-(13x-7))/2=5x-5 | | 6f-10-4f=3 | | 16a^2+16a-2=4 | | e/5+8=-10 | | 5x-10)=(12x-14) | | -7(u+4)=-4u-1 | | 12-3z=7 | | a-6=2a+3 | | 8(2x-1)-4x=9x-14 | | r-59/4=7 | | 2-x/x-2,x=-5 | | 2x+3x=20*2 | | y=15-2y+3 | | z/2+15=18 | | 2/x^2-4x+3,x=-1 | | z2+ 15= 18 | | 10=4+3h | | 9z/z^2-9,z=-3 | | 4^2x-1=32 | | X+2+x+2+x+1+x+1+x=x+5+x+5+x | | -x/0.2=3.2 | | 7x-3+5x-2=6x-6 | | 7x+0,27=10x | | 10y+8=4y+4 | | x-24x(-12)+2=0 | | (45+y²)+y=9 | | 0=4t^2-9t-40 |